« 1 2 3View All»

Canada’s soil quality guidelines for hexavalent chromium for agricultural and presidential/parkland are both 0.40 mg/kg so if Runkle Canyon’s chromium reading is from this deadly kind of chromium, Cr (VI), it would be 3,250 times Canada’s limit for the carcinogen.

Rocketdyne chromium concentrations

Runkle Canyon sits beneath 11-acre drainage from Area IV of Boeing’s Santa Susana Field Laboratory (SSFL), the site of at least two partial nuclear reactor meltdowns as well as numerous radiation and chemical spills, accidents and dumping. DTSC is in charge of overseeing a cleanup of the site that is scheduled to end in 2017.

A September 2005 analysis called “Soil Background Report, Santa Susana Field Laboratory, Ventura County, California — Final” was submitted by the environmental firm MWH for Boeing, NASA and the Department of Energy which operated most of Area IV’s facilities, now under order to be remediated to stringent EPA Superfund cleanup standards.

“MWH has proven expertise in global environmental issues,” says the company’s website. “These include water resources, water distribution, drainage and flood control, wastewater treatment, environmental planning, mining engineering, solid waste management, remediation and reclamation, air quality management, aquarium design and sustainability.”

Beginning on page 58 of this 68-page report is “Table 4-6 (1 of 2) Soil Background Comparison Levels for Metals, Santa Susana Field Laboratory.” According to this report, the “Soil Background Comparison Level Value” for Rocketdyne soil is:

Chromium: 37 mg/kg meaning that the Runkle Canyon sample is over 35 times Rocketdyne’s background.

Nickel: 29 mg/kg making it over 23 times the lab’s background comparison level.

Molybdenum: 5.3 mg/kg which is 3.8 times Rocketdyne’s background.

On page 38 of this document is this statement:

If the metal concentration in the investigation unit data exceed the soil background comparison value, further evaluation will be necessary to determine whether site characterization is complete. As discussed with DTSC, this includes evaluating other site information (historical operations, sampling data trends, and risk assessment findings) in a best professional judgement [sic] approach to making decisions regarding additional sampling needs (DTSC 2005).

Indeed, not only are the chromium, nickel and molybdenum Runkle Canyon results from the mysterious white evaporate significantly over the background values on heavily-polluted Rocketdyne, they also trip the Department of Energy’s Preliminary Action Level (PAL) for total chromium in an “industrial” setting, which Runkle Canyon is not. The DOE’s PAL for chromium is 64 mg/kg. The Runkle result is over 20 times this limit even though the DOE standard is for industrial settings which, usually, have less stringent limits than residential and parkland scenarios.

Rocketdyne connection to Runkle Canyon?

Serafine, and his dog Boo, inspect the white precipitate cascading down the hill June 10.
Serafine, and his dog Boo, inspect the white precipitate cascading down the hill June 10.

Do these high chromium, nickel and molybdenum readings indicate that this contamination is oozing off the Rocketdyne site onto and under Runkle Canyon below? Do the Radiation Rangers’ Pat-Chem sampling and tests, as well as the city of Simi Valley’s Tetra Tech analysis which indicate high arsenic, nickel, vanadium, cadmium, barium, chromium and lead in Runkle Canyon’s creek water and soil, provide evidence that this pollution came from Rocketdyne?

Gravity and logic could lead to that conclusion. Indeed, as we reported in “Bubble Trouble” in the July 27, 2007 issue of Los Angeles CityBeat:

Another disturbing aspect to the mystery of Runkle Canyon’s astronomically high arsenic and gooey water is a subterranean fault map that shows a faultline carving through the middle of the Rocketdyne site and leading right down into the canyon. This could account for the polluted seeps that plague the proposed development’s property even during drought years such as this one.

That subterranean fissure is called the Burro Flats Fault and leads through Area IV and Runkle Canyon. This suggests that contaminants from Rocketdyne may have a pathway through the geologic Chatsworth Formation underneath the lab into the canyon and beyond towards the Arroyo Simi its underlying aquifer which waters Simi Valley.

Truth nor Consequences

Unraveling the riddle of Runkle will partially rely on the accuracy of the documents supplied DTSC. EnviroReporter.com has discovered evidence that Boeing/NASA/DOE-supplied documents create questions as to what is accurate in the polluters’ data as it pertains to Runkle Canyon. That would suggest that additional sampling and testing in Runkle Canyon may be necessary to fully investigate the nature of the contamination and its source accurately.

On Dec. 13, 2007, Boeing supplied DTSC with a 199-page “Offsite Data Evaluation Report” that “summarizes and evaluates the results of offsite media sampling and testing data for chemical and radiological contamination collected by Boeing, NASA, and DOE within a 15-mile radius around the Santa Susana Field Laboratory over a nearly 60 year time period.”

“I certify under perjury of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted,” wrote Thomas D. Gallacher, Boeing’s director of the lab’s Environment, Health & Safety. “I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.”

However, the report says on 1-18 (p. 37 in the PDF) that “Runkle Canyon and the SSFL do not share a common property boundary,” when maps in the document show that it clearly does. The document goes on to say “No environmental investigations have been performed by Boeing, NASA, or DOE on the Runkle Canyon property” when the map showing toxic trichloroethylene hits in Runkle groundwater is on page 184. The last page of this report combines the two notions by showing the groundwater sampling spot on Runkle Canyon and the common Rocketdyne border and saying, in conclusion, “Offsite sampling sufficient with no data gaps.”

Despite these discrepancies, there does exist information on chromium, including the cancerous hexavalent chromium valence, being used at the lab and polluting several buildings and areas according to June 1, 2008 report “Area IV Santa Susana Field Laboratory (SSFL) Data Gap Analysis Report” prepared by CDM for the Department of Energy. [This a huge file that takes a while to download]

On pages 765-782 out of this 793-page report, chromium is listed under places where “Potential/Reported Chemical Use or Release” occurred at SSFL. These locations include:

“Hexavalent Chromium, Chemicals associated with 4003 Leach Field”

“Bag House Including Catch Basin”

“17th Street Drainage Area”

– “Former Industrial Dry Well”

The report shows that chromium contamination is a concern at Rocketdyne. Now chromium contamination has precipitated on the soil surface of Runkle Canyon which sits in an eleven-acre drainage off of SSFL’s Area IV.

Flora and fauna impacted by chromium

Though the results aren’t in on the nature of the Runkle Canyon’s chromium valences, trivalent Cr (III) and/or hexavalent Cr (VI), there is unsettling data that suggests that it could contain the deadly hexavalent variety of the heavy metal.

According to a March 2002 United Kingdom Environment Agency report called “Contaminants in Soil: Collation of Toxicological Data and Intake Values for Humans. Chromium,” there are environmental characteristics of the valences:

Chromium compounds show a wide range of water solubilities, but the general rule is that the trivalent chromium salts are insoluble and the hexavalent ones are soluble.
Systemic toxicity has been observed in humans following dermal exposure to chromium compounds, indicating significant transfer across the skin. A number of animal and human studies of the dermal penetration of chromium have been reported.

« 1 2 3View All»