Runkle Canyon Response Plan Simi Valley, California

December 4, 2008

Prepared for: Runkle Canyon, LLC 27240 Turnberry Lane, Suite 100 Valencia, CA 91355

Prepared by:

1835 Terminal Drive, Suite 200 Richland, WA 99354

TABLE OF CONTENTS

Summ	ary		3			
1.0	Introduction					
2.0	History	of Radionuclide Soil Sampling in Runkle Canyon5	5			
3.0	Radiological Health Risk Assessment 10					
4.0	Actions Requested by the Department of Toxic Substances Control					
5.0	Actions To Be Taken by Runkle Canyon, LLC15					
6.0	Reference	ces	5			
Attach	ment A	Soil Sampling Plan for Proposed Non-Residential Eastern and Southeastern Areas of Runkle Canyon	3			
Attach	ment B	Plan for Removal of Tar Material from the Drainage Areas of Runkle Canyon	1			

Summary

Runkle Canyon is the site of a proposed residential development adjacent to existing neighborhoods at the southern edge of Simi Valley, California. The development would consist of approximately 1,595 acres that would include a mix of residence types (senior housing and single-family homes), open space, a neighborhood park, and a multiuse trail system. Residences would cover approximately 140 acres in the northern portion of the project area, and 1,456 acres would be for open space and recreational uses. Runkle Canyon, LLC is the developer.

Runkle Canyon has been the subject of extensive environmental investigation, including investigations of potential radiological contamination from activities at the Santa Susanna Field Laboratory (SSFL), with reports of environmental consultants dating back to 1999. The California Department of Toxic Substances Control (DTSC) conducted a review of forty-one (41) documents submitted by Runkle Canyon, LLC in connection with the Standard Agreement for participating under California's Land Reuse and Revitalization Act (CLRRA) Program effective April 23, 2008. In a letter dated October 17, 2008, DTSC commented on the documents reviewed, prescribed additional work necessary in DTSC's opinion to complete the assessment of environmental conditions at Runkle Canyon, and requested Runkle Canyon, LLC to prepare a plan to respond to certain issues raised by DTSC. In this letter, DTSC ruled out any need for further investigation related to the groundwater at Runkle Canyon and instead focused its request for additional information and/or actions from Runkle Canyon, LLC on the following:

- 1. Further confirmation that there is no health risk from strontium-90 (90 Sr) and cesium-137 (137 Cs) in the soil.
- 2. The disposal of tar material at the site that poses a potential threat to human health because benzo(a)anthracene concentrations exceed acceptable levels.
- 3. Allowing DTSC access to the property for assessment of a "white precipitate" material (This independent collection and analysis was undertaken by DTSC with negative results for any material or metal of concern).

This document contains Runkle Canyon, LLC's proposed response plan to address DTSC's request to better define the environmental conditions at the site. Runkle Canyon, LLC proposes to take the following actions in response to DTSC's requests:

- Conduct additional soil sampling for ⁹⁰Sr and ¹³⁷Cs in certain areas of Runkle Canyon.
- Remove the tar material from the drainage area of Runkle Canyon.

Runkle Canyon, LLC will implement the soil sampling plan (attachment A) under direct observation of DTSC personnel in the field. Split samples will be collected and provided to DTSC for comparison purposes.

Runkle Canyon, LLC will remove the tar material from the site in accordance with Attachment B. DTSC is invited to observe the performance of this work if desired.

1.0 Introduction

Runkle Canyon is a proposed residential development adjacent to existing neighborhoods at the southern edge of Simi Valley, California, with access from the southern end of Sequoia Avenue. The project site consists of approximately 1,595 acres that would include a mix of residence types, open space, a neighborhood park, and a multiuse trail system. Runkle Canyon, LLC proposes residential development on approximately 140 acres in the northern portion of the project area and open space and recreational areas for the remaining approximately 1,456 acres. A total of 461 residences are approved for the site and would include 138 senior housing units (62 of which would be affordable housing), 298 single-family homes, and 25 single-family estate homes (City of Simi Valley 2004).

In 2004, the City of Simi Valley prepared a final environmental impact report (EIR) in accordance with the California Environmental Quality Act to evaluate the potential environmental impacts of the development activities (City of Simi Valley 2004). The EIR was certified on April 26, 2004. It provides a detailed environmental characterization of the site and of proposed activities.

The Radiologic Health Branch (RHB) of the California Department of Public Health and, more recently, the Department of Toxic Substances Control (DTSC) have continued to investigate the potential for presence of the radionuclide strontium-90 (⁹⁰Sr) in the soil of Runkle Canyon. Since the EIR certification there have been two soil sampling surveys. One survey resampled at the locations of the five highest ⁹⁰Sr soil concentrations from the previous studies, and the other was a comprehensive soil survey of the proposed residential area. Section 2.0 discusses the surveys.

A radiological health risk assessment from the potential presence of ⁹⁰Sr in the soil of Runkle Canyon was conducted in 2005 (Dade Moeller & Associates 2005a). Section 3.0 summarizes this assessment and discusses it in light of more recent sampling information.

This response plan addresses the requests made by DTSC upon the completion of its review of Runkle Canyon documents pursuant to the Standard Agreement under the California Land Reuse and Revitalization Act (CLRRA). In a letter to representatives of Runkle Canyon, LLC on October 17, 2008, DTSC requested that Runkle Canyon, LLC prepare a response plan to address the following issues:

- 1. An explanation of the apparent decrease in residual strontium-90 (⁹⁰Sr) activity in soils samples from 1998 to 2007.
- 2. A justification for the conclusions in one report that there is no health risk from ⁹⁰Sr in Runkle Canyon soil and that no further sampling is necessary with consideration of additional radionuclide testing.
- 3. An explanation of why cesium-137 (137 Cs) was not present (above background) when 90 Sr was identified.

- 4. A request for collection and analysis of samples for metals concentrations and mineral composition to verify chromium concentrations in a white crystalline material to assess the potential health hazard of this material.
- 5. A request to remove and properly dispose of tar material at the site that poses a potential threat to human health because benzo(a)anthracene concentrations exceed acceptable levels.

Section 4.0 discusses these issues and provides specific responses to them. Section 5.0 discusses the actions Runkle Canyon, LLC will undertake to in response to DTSC's requests. Attachments A and B are specific plans to address DTSC's requests and contain additional detail.

2.0 History of Radionuclide Soil Sampling in Runkle Canyon

Sampling for radionuclides in the surface soil of Runkle Canyon began in late 1998. Strontium-90 (⁹⁰Sr), cesium-137 (¹³⁷Cs), and tritium (³H) have been the radionuclides of interest. A major point of comparison has been the background levels of these radionuclides from the U.S. Environmental Protection Agency (EPA 1995) for the area around the Santa Susana Field Laboratory (SSFL). Table 1 lists those values. Of particular interest have been the values for average local background concentration (fourth column), which were about 7 percent and 12 percent, respectively, of the typical U.S. background concentration for ⁹⁰Sr and ¹³⁷Cs (the last column). The local background concentration for tritium was consistent with the typical U.S. background concentration. None of these 1995 background samples were conducted at Runkle Canyon.

			Average Local	Typical U.S.
	Sampling Area on	Average Soil	Background	Background
Radionuclide	Brandeis-Bardin	Concentration	Concentration	Concentration
Strontium	RMDF Watershed	0.103 pCi/g	0.052 pCi/g	0.7 pCi/g
Cesium	Bldg 59 Watershed	0.20 pCi/g	0.087 pCi/g	0.7 pCi/g
Tritium	Bldg 59 Watershed	2,250 pCi/L	~140 pCi/L	100-300 pCi/L

 Table 1. Comparison of radionuclide concentrations (EPA 1995).

pCi/g = picocuries per gram; pCi/L = picocuries per liter; RMDF = Radioactive Material Disposal Facility at SSFL

Sampling campaigns were conducted to determine if the Runkle Canyon site was contaminated with radionuclides that originated at SSFL. Sampling for ³H is not included because it has not been detected above background levels. Similarly, ¹³⁷Cs has not been detected at elevated concentrations; however, ¹³⁷Cs is included in the following description because ¹³⁷Cs and ⁹⁰Sr are produced in nuclear reactors and atmospheric weapons testing in a ratio of about 1.6 to 1. During the earlier soil sampling campaigns, the ⁹⁰Sr concentration appeared to be somewhat elevated and the characteristic ¹³⁷Cs to ⁹⁰Sr ratio that would be indicative of either atmospheric fallout or nuclear reactor origin was not observed.

The following is a chronological history and description of ⁹⁰Sr and ¹³⁷Cs soil sampling in Runkle Canyon.

December 1998. QST Environmental collected four soil samples at three locations on December 23, 1998 (QST 1999). Sampling locations were all in proposed nonresidential areas in the southern 715-acre parcel of the property or at the extreme southern edge of the eastern 550-acre parcel. The sampling location closest to SSFL was about 440 meters west-southwest of the property line. Sample locations were selected to maximize the possibility of finding contamination and were not based on methods of the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM; EPA 2001). The samples were analyzed for ⁹⁰Sr, ¹³⁷Cs, and tritium (³H). Table 2 summarizes the results. The study concluded, "It would appear there may have been some impact of radionuclides to the site from the SSFL facility. Consequently, a more extensive site investigation appears to be necessary to the [*sic*] determine the lateral and vertical impact of radionuclides in the soil."

	⁹⁰ Sr (4 s	amples)	¹³⁷ Cs (4 samples)		
Result	Samples	MDC	Samples	MDC	
Average (pCi/g)	0.59	0.21	0.028	0.17	
Median (pCi/g)	0.62	0.19	0.017	0.14	
Minimum (pCi/g)	0.25	0.19	-0.03	0.14	
Maximum (pCi/g)	0.86	0.22	0.11	0.22	
Std. deviation (pCi/g)	0.30	0.01	0.06	0.03	
Results > MDC	4	of 4	0	of 4	

 Table 2.
 Summary soil sampling statistics in December 1998 (QST 1999).

pCi/g = picocuries per gram; MDC = minimum detectable concentration.

June–July 1999. Foster Wheeler Environmental collected soil samples at 58 sampling locations determined using the MARSSIM process from June 28 to July 2, 1999 (Foster Wheeler 1999). The company collected an additional 9 discretionary samples and duplicates at three MARSSIM sample locations. Final results included 70 ⁹⁰Sr results and 67 ¹³⁷Cs results. The sampling locations were all in the eastern 550-acre parcel of the property and were split between residential and nonresidential areas of this parcel. Radionuclides analyzed were ⁹⁰Sr, ¹³⁷Cs, and ³H. Table 3 lists the summary soil sampling statistics for ⁹⁰Sr and ¹³⁷Cs.

Table 3.	Summary soil sampling statistics in June–July 1999 (Foster Wheeler
1999).	

	⁹⁰ Sr (70 s	samples)	¹³⁷ Cs (67 samples)		
Result	Samples MDC		Samples	MDC	
Average (pCi/g)	1.33	0.75	0.09	0.08	
Median (pCi/g)	1.07	0.75	0.09	0.08	
Minimum (pCi/g)	-0.29 0.5		-0.05	0.05	
Maximum (pCi/g)	12.34	0.99	0.3	0.12	
Std deviation (pCi/g)	1.63	0.08	0.08	0.01	
Results > MDC	52 0	of 70	29 c	of 67	
DCGL ^a (pCi/g)	1.229		2.857		
Results > DCGL	18 of 70		0 0	of 70	

pCi/g = picocuries per gram; MDC = minimum detectable concentration.

a. DCGL = derived concentration guideline level; based on 7.5 millirem per year per radionuclide and a risk of 4.5×10^{-6} per year per radionuclide.

Foster Wheeler determined the MARSSIM critical value would be 38, where the soil concentration in 38 of the 58 MARSSIM samples must exceed the determined DCGL (derived concentration guideline level) for the soil concentration of the sampled area to be considered above the DCGL. Thirteen of the 58 samples for 90 Sr and none of the samples for 137 Cs were above the DCGL, which led to the report's conclusion that the site was "non-contaminated for the radionuclides detected." Each of the DCGLs was based on 7.5 millirem per year, so that the total radiation dose from all radionuclides would be less than the EPA standard of 15 millirem per year (or less than an annual risk of 9×10^{-6}). However, the Foster Wheeler report did not make a statement as to whether the area was considered to be Survey Class 1, 2, or 3. The critical value is appropriate for a Class 1 area, but no samples would be expected to be above the DCGL for Class 2 or 3 areas. There is therefore some uncertainty about the appropriateness of the DCGL (it could be too low) or the analytical detection capability of the analysis (which could be too high). The average ⁹⁰Sr concentration was slightly above the DCGL, as was the concentration of 18 of the 70 soil samples. However, the 4.9×10^{-6} risk from the average soil concentration was still well within the EPA acceptable annual risk range; and the 4.9×10^{-5} risk from the highest soil sample was also well within that range. Annual risk from the average ¹³⁷Cs concentration was very low, at 1.4×10^{-7} .

September 2000. Nineteen samples were collected at 17 locations on September 23, 2000 (<u>Harding ESE 2000</u>). Sampling locations were all in nonresidential locations in the southern (Rancho Simi) 720-acre parcel. There were 2 blind duplicates (SS-18 and SS-19) at locations SS-3 and SS-7. Harding ESE conducted a limited surface soil sampling program "that would evaluate certain areas of the Property with the highest probability of being impacted by run-off [of radionuclides] from the [SSFL] facility." Therefore, this was not a MARSSIM-based sampling plan.

	⁹⁰ Sr (19 s	amples)	¹³⁷ Cs (19 samples)		
Result	Samples	MDC	Samples	MDC	
Average (pCi/g)	0.96	0.66	0.015	0.11	
Median (pCi/g)	0.39	0.65	0.015	0.12	
Minimum (pCi/g)	-0.32	0.47	-0.09	0.07	
Maximum (pCi/g)	4.76	0.79	0.09	0.14	
Std. deviation (pCi/g)	1.49	0.10	0.04	0.02	
Results > MDC	7	of 19	1 of 19		

Table 4. Summary statistics for soil sampling in September 2000 (HardingESE 2000).

pCi/g = picocuries per gram; MDC = minimum detectable concentration.

The report compared sample results to the DCGL values that were calculated in Foster Wheeler (1999). The concentrations of ⁹⁰Sr in four samples exceeded the DCGL; none of the ¹³⁷Cs results exceeded the DCGL. This report concluded that "Harding ESE cannot make a definitive conclusion regarding the presence or absence of strontium-90 in the soil, without additional data."

<u>March 2003</u>. Miller Brooks Environmental conducted a survey on March 13 and 14, 2003 (Miller Brooks 2003a,b,c). The company collected 13 soil samples and conducted one soil boring to 7 feet in the southern 715-acre parcel, collected 6 soil samples and conducted five soil

borings to a depth of 7 feet in the 550-acre eastern parcel, and collected 4 soil samples from the 350-acre western parcel. Three offsite samples were collected. The analytical laboratory analysis of these soil samples for ⁹⁰Sr and the data reporting of an "analyte reporting limit" – presumably a minimum detectable concentration (MDC) – that ranged from 2 to 2.8 picocuries per gram, which was too high to be of value in comparison to the earlier sampling results that had lower MDCs. In addition, most of the results were not reported quantitatively but rather as "not detected at the reporting limit." Only 2 of the 49 sample results (including samples at depth) were reported quantitatively (2.1 ± 1.2 and 2.2 ± 1.2 picocuries per gram). These data are not considered useful or representative for the presence of ⁹⁰Sr in the soil of Runkle Canyon when considered together with both the earlier and later sampling results. There was no analysis for ¹³⁷Cs.

June 2005. At the request of the State of California Department of Public Health Radiologic Health Branch (RHB), resampling for ⁹⁰Sr was conducted at the sample locations of the five highest ⁹⁰Sr soil sample results (<u>Dade Moeller & Associates 2005b</u>). Samples were collected as close as possible to the original five sample locations with representatives of the ownership group, Dade Moeller & Associates, and the State of California RHB present as samples were physically collected by an independent environmental contractor. The samples were split for independent analysis by both a contracted analytical laboratory and a California state laboratory RHB uses. Both laboratories showed ⁹⁰Sr concentrations to be much lower than the original results; the state laboratory results were the lowest. There was no analysis for ¹³⁷Cs because it had not been detected or was present only at very low concentrations in previous surveys. Table 5 lists the results.

	Original ^a Results (pCi/g)		Contracted Laboratory A (pCi/g)		CA State Laboratory (pCi/g)	
Sample	Result	MDC	Result	MDC	Result	MDC
GP-29	5.13±0.69	0.84	0.140±0.167	0.280	0.068±0.242	0.399
			-0.065 ± 0.185	0.327		
GP-44	6.38±0.79	0.99	0.247±0.180	0.293	0.013±0.179	0.299
GP-52	12.34±0.86	0.59	0.423±0.177	0.273	0.137±0.192	0.306
SS-3	3.64±0.62	0.75	0.215±0.150	0.244	-0.022±0.206	0.348
SS-6	4.76±0.63	0.64	0.173±0.170	0.282	0.056 ± 0.265	0.439

Table 5. Strontium-90 in the five highest soil samples in June 2005 (Dade Moeller & Associates 2005b).

pCi/g = picocuries per gram; MDC = minimum detectable concentration.

a. GP-29, GP-44, GP-52 from Foster Wheeler (1999); SS-3, SS-6 from Harding ESE (2000).

The results seemed to indicate that the earlier, higher results were anomalous and could have been caused by cross-contamination or analytical or counting issues in the laboratories. The results from the State of California laboratory were even lower, and they are more consistent with the results of sampling in 2007 (discussed below). The report concluded that an already low potential health risk from ⁹⁰Sr was likely even lower based on the results. The report further concluded that no additional ⁹⁰Sr sampling and analysis was necessary.

<u>October 2007</u>. At the direction of Runkle Canyon LLC, Dade Moeller & Associates developed a MARSSIM-based soil sampling plan for ⁹⁰Sr in the soil of the proposed residential area in the

eastern parcel and, at the request of the RHB, included the northwest quadrant of the site (<u>Dade Moeller & Associates 2007a</u>). The entire project site was considered a Class 3 survey area, and no results above the DCGL of 1 picocurie per gram were expected. An independent environmental firm was contracted to collect 63 soil samples from October 3 to 8, 2007. There were 57 surface sample locations (0 to 6 inches depth) and 6 locations where samples were collected at a depth of 6 to 12 inches. Unlike the early sampling campaigns, and at the urging of the RHB, a different analytical laboratory was contracted, one which had a ⁹⁰Sr MDC in soil of 0.03 to 0.05 picocuries per gram, which is significantly lower than earlier sampling analyses. Table 6 lists summary sampling statistics from the survey. These 2007 results showed there was no indication of ⁹⁰Sr in the proposed residential areas of Runkle Canyon and that the levels were much closer to the local background level of 0.052 picocuries per gram (EPA 1995). Because radioactive decay would have occurred and resulted in a nearly 40 percent decrease in the background level between background sampling in late 1994 and the 2007 sampling, and because the uncertainty of the original EPA value was 0.052 \pm 0.031 picocuries per gram¹, these 2007 sample results are very similar to the expected background.

	Contracted I	Laboratory B	City of Simi Valley ^a		
Samples	63 samples	MDC	10 samples	$\mathbf{L}\mathbf{L}\mathbf{D}^{\mathbf{b}}$	
Average (pCi/g)	0.014	0.019	0.011	0.013	
Median (pCi/g)	0.012	0.019	0.012	0.013	
Minimum (pCi/g)	-0.010	0.008	-0.002	0.009	
Maximum (pCi/g)	0.078	0.033	0.027	0.02	
Std deviation (pCi/g)	0.015	0.008	0.0082	0.0041	
Results > MDC	19 of 63		5 ot	f 10	
DCGL ^c (pCi/g)	1		Not applicable		
Results > DCGL	0 of 63		0 ot	f 10	

Table 6. Summary statistics for soil sampling (Dade Moeller & Associates 2007a; City of Simi Valley 2007).

pCi/g = picocuries per gram; MDC = minimum detectable concentration.

a. City of Simi Valley laboratory results are not included in the 2007 report.

b. LLD = lower limit of detection; LLD and MDC are comparable statistics.

c. DCGL = derived concentration guideline level; based on 7.5 millirem per year per radionuclide and a risk of 4.5 x 10^{-6} per year per radionuclide.

The City of Simi Valley also collected split soil samples during the sampling campaign and had 10 samples analyzed for ⁹⁰Sr. Table 6 shows those results in comparison with the Dade Moeller & Associates (2007a) results. The table shows that the contracted laboratory and the City of Simi Valley samples are very similar and are much lower than the earlier (pre-2007) results. Table 7 compares only the 10 split samples. Again, the results are very similar. Both are much lower than the pre-2007 results, and both are consistent with background levels expected in 2007.

¹ Calculated independently from the original report data because EPA (1995) does not provide an uncertainty estimate.

	Contracted I	Laboratory B	City of Simi Valley		
	Samples	MDC	Samples	LLD ^a	
Average (pCi/g)	0.015	0.015	0.011	0.013	
Median (pCi/g)	0.013	0.013	0.012	0.013	
Minimum (pCi/g)	-0.0003	0.008	-0.002	0.009	
Maximum (pCi/g)	0.042	0.027	0.027	0.02	
Std deviation (pCi/g)	0.014	0.006	0.0082	0.0041	
Results > MDC	4	of 10	5 (of 10	
DCGL ^b (pCi/g)	1		Not applicable		
Results > DCGL	0 of 10		0 of 10		

Table 7. Summary statistics for the 10 split soil samples (Dade Moeller & Associates 2007a and City of Simi Valley 2007).

pCi/g = picocuries per gram; MDC = minimum detectable concentration.

a. LLD = lower limit of detection; LLD and MDC are comparable statistics.

b. DCGL = derived concentration guideline level; based on 7.5 millirem per year per radionuclide and a risk of 4.5×10^{-6} per year per radionuclide.

3.0 Radiological Health Risk Assessment

A radiological health risk assessment was conducted in 2005 (Dade Moeller & Associates 2005a) to consider the sampling data from 1998 to 2003 (QST 1999; Foster Wheeler 1999; Harding ESE 2000, Miller Brooks 2003a, 2003b, 2003c). The assessment concluded that the potential risk to future residents of Runkle Canyon would be very low, near the lower bound of the acceptable annual risk range of 1×10^{-6} to 1×10^{-4} for even those potentially highly exposed residents in the proposed suburban land use area². Typical residents and individuals who would use the nonresidential areas would have even lower risks – less than 1×10^{-6} per year in all cases. The parameter values and approaches of this assessment were generally consistent with those the National Committee on Radiation Protection and Measurements (NCRP) used to derive suburban and no food suburban (no home-grown vegetables) soil screening limits in Report 129 (NCRP 1999). The EPA Preliminary Remediation Goal (PRG) default scenario (EPA 2004) does not apply to Runkle Canyon because the proposed land use is well known and does not fit the default scenario.

Since 2003, soil sampling has indicated that the ⁹⁰Sr soil concentrations are even lower than indicated by the earlier sampling (Dade Moeller & Associates 2005b, 2007a). The exact reason for this decrease is not known, but it is likely due to bias in methods or counting protocols in the laboratories that performed the earlier analyses. Section 4.0 discusses this issue in more detail. As Section 2.0 discusses, the later sampling indicates the ⁹⁰Sr soil concentrations in Runkle Canyon are more indicative of the local background level.

Therefore, when considering the new sampling data in context of the previous radiological health risk assessment, it is likely that the potential radiological risk to all residents and visitors of Runkle Canyon would be much less than 1×10^{-6} per year in all cases.

10

² Ingestion of home-grown vegetables is the dominant exposure pathway. See NCRP 1999.

4.0 Actions Requested by the Department of Toxic Substances Control

This section addresses the actions DTSC requested of Runkle Canyon, LLC as part of its CLRRA review and includes the company's responses to these requests. The DTSC requests are shown in *italics* with the Runkle Canyon, LLC response following thereafter. For clarity in the responses, the issues have been numbered from 1 to 5, and issue 2 has been split into 2 parts.

Based on its review of the 41 documents, DTSC concludes that additional work is necessary to better define environmental conditions at the site and to address one or more potential threats to public health and the environment. DTSC requests that Runkle Canyon, LLC prepare a Response Plan addressing these needs. Here is DTSC's prescription for that Response Plan:

Issue 1

Radionuclide Testing

(1) Explain the reason(s) for the apparent decrease in residual Sr-90 soil activity from 1998 to 2007.

<u>Response</u>. Some of the decrease in the detected level of ⁹⁰Sr in the soil of Runkle Canyon is a result of radioactive decay. The first survey occurred in December 1998 and the most recent in October 2007, almost 9 years later. Strontium-90 has a half-life of 29.1 years. Over this time the activity would decrease about 20 percent. Decay does not however account for the entire apparent decrease to the very low levels in the 2007 survey. The most recent independent results from three independent laboratories – the State of California laboratory in 2005 (Table 5), the City of Simi Valley in 2007, and Contracted Laboratory B in 2007 (Tables 6 and 7) – were much lower than earlier results, were consistent with one another, and were consistent with the expected local background. The likely explanation of the discrepancy between the earlier and the later results is that the analytical laboratories for the earlier surveys suffered from some type of bias³ in the analytical method or the counting technique. In fact, Contracted Laboratory A (Table 5), which analyzed five samples, was the same laboratory that analyzed the earlier Foster Wheeler samples in 1999 (Table 3), although the laboratory had changed ownership and name in the intervening period.

In summary, the apparent decrease in results is likely due to analytical or counting bias in the earlier sample analysis. This statement is partly speculative because any definitive statement would require extensive examination of laboratory protocols and data. The results from the 2007 sampling are likely more representative of the true level of ⁹⁰Sr in the soil of Runkle Canyon because of the consistency among the results from Contracted Laboratory B (which has NUPIC⁴ certification), the State of California laboratory, and the independent laboratory the City of Simi Valley used.

³ Bias is a persistent difference between the measured result and the true value of the quantity being measured, which does not vary if the measurement is repeated. (MARLAP Manual, USEPA, USNRC 2004)

⁴ NUPIC = Nuclear Procurement Issues Committee.

Issue 2a

(2) Provide additional justification for statements made in Document #7 that "The overall conclusion is that there is effectively no health risk from Sr-90 in Runkle Canyon soil," and "No further sampling of soils at Runkle Canyon for the detection of Sr-90 is necessary." The information you provide should address MARSSIM area classification(s), the justification(s), sample density calculations, and non-parametric statistics.

Response. Document #7 is Strontium-90 Soil Sampling in Runkle Canyon, Simi Valley, California (Dade Moeller & Associates 2007a). The earlier Dade Moeller & Associates report, Radiological Health Risks from Strontium-90 in the Runkle Canyon Development Simi Valley, California (Dade Moeller & Associates 2005a) provides much of the basic justification for these statements. Using soil sampling data available at that time, the report showed that the potential annual risk to a highly exposed resident would be about 1×10^{-6} (1 in 1 million) and less than that risk level for a typical resident. The newer soil sampling data from 2007 showed a factor of 10 reduction in average concentration of ⁹⁰Sr in soil, and so the risk would also be reduced in direct proportion. The recommended limits for ⁹⁰Sr in soil in NCRP Report 129, *Recommended* Screening Limits for Contaminated Surface Soil and Review of Factors Relevant to Site-Specific Studies, for the suburban and no-food suburban exposure scenarios also provide indication that the potential risk is at or below the lower limit of the acceptable risk range. It should be emphasized that the default PRG value for ⁹⁰Sr should not be applied because the default land use scenario is not consistent with the proposed Runkle Canyon use. At the conclusion of the soil sampling Runkle Canyon, LLC proposes in the response to issue 2b below, the company will prepare a report that considers the new sampling results to further evaluate the potential health risk.

In relation to the soil sampling parameters DTSC requested, this information is included in the report, *Soil Sampling Plan for the Runkle Canyon Main and Northwest Grading Areas* (Dade Moeller & Associates 2007b), which has been provided to DTSC. In summary, this sampling area was considered MARSSIM Class 3, the DCGL was set at 1 picocurie per gram (which corresponds to an annual risk of less than 1×10^{-6}), and the estimated sample standard deviation was 0.172 picocurie per gram, resulting in 57 samples for the residential sampling area. None of the sample results were greater than the DCGL.

Issue 2b

Runkle Canyon, LLC should consider including provisions for additional radionuclide testing in the Response Plan. This aspect of the Response Plan should at a minimum, specify sample locations, the number of samples to be collected at each location, the analytical methods to be used, the detection limits to be used, and a justification for the proposed level of sampling.

<u>Response</u>. In accordance with DTSC's request, Runkle Canyon, LLC will agree to perform additional ⁹⁰Sr soil sampling in those nonresidential areas of Runkle Canyon closest to the SSFL. Attachment A to this response plan is the soil sampling plan for that area and includes all of the requested information. In summary, this sampling area is considered MARSSIM Class 3 and the

DCGL is set at 1.7 picocuries per gram, which corresponds to an annual risk of 1×10^{-7} based on the no-food suburban exposure scenario in NCRP Report 129 (NCRP 1999). Using the MARSSIM methodology, 14 sample locations were randomly selected within a triangular grid over the sampling area that was generated by the VSP software program⁵. Analytical capability will have a detection limit of 0.05 picocurie per gram or lower for ⁹⁰Sr, which is similar to that for the 2007 sampling. Upon request Runkle Canyon, LLC will collect split soil samples and provide to DTSC for analysis of ⁹⁰Sr.

Issue 3

(3) Explain why Cs-137 soil radioactivity was not present (above background) when Sr-90 was identified. If no reasonable explanation can be given, the Response Plan should include provisions for testing to identify Cs-137 and determine ratios of Cs-137 to Sr-90 in soil.

Response. Cesium-137, as a gamma-emitting radionuclide, is much easier to detect than ⁹⁰Sr, and no radiochemical separation is needed. In reviewing the historical sampling information it can be seen that the detection limits for ¹³⁷Cs are much lower than those for ⁹⁰Sr. Therefore, the discrepancy is not due to error in detection of ¹³⁷Cs but rather to limitations in the detection of ⁹⁰Sr in the earlier laboratory analysis (as noted in the response to issue 1). None of the previous sample analyses showed any indication of the presence of ¹³⁷Cs. However, Runkle Canyon, LLC will agree to take additional tests for the presence of ¹³⁷Cs. Upon request Runkle Canyon, LLC will collect split soil samples and provide to DTSC for analysis of ¹³⁷Cs. The sampling plan in Attachment A includes analysis for ¹³⁷Cs.

Issue 4

White Crystalline Material

The white crystalline material appears to be sulfate salts leaching out of the mined aggregate stockpiles. Because the material on the rock obtained form the "Radiation Rangers," containing elevated Cr, the material on-site should be collected and analyzed for metals concentrations and mineral composition to verify Cr concentrations in the material and provide a positive identification of the material. DTSC plans to independently collect and analyze representative samples of the white material for those purposes. If the results are positive, it will then be necessary for Runkle Canyon, LLC to map the location(s) and extent of the material, prior to the 2008-2009 rainy season, in preparation for possible removal and disposal or other corrective action. If the results confirm Cr or other metals are present at concentrations deemed actionable and the material cannot be mapped ahead of the forthcoming wet season, DTSC will direct that measures be taken to prevent the material from dissolving and washing away. Such measures could include removal, or placement of a suitable temporary cover. The Response Plan should address this contingency.

⁵ Visual Sample Plan (VSP) software version 5.3. Software and documentation available at <u>http://dqo.pnl.gov/vsp</u>. Software copyright 2008 Battelle Memorial Institute. All rights reserved.

<u>Response</u>. The DTSC Environmental Chemistry Laboratory has analyzed the white precipitate samples. Two sets of samples were collected by DTSC on August 27, 2008 and September 24, 2008. None of the samples contained elevated chromium concentrations. Final results were received on November 3, 2008. Table 8 summarizes the results.

	Sample Identification ^a				Reference	*
Chemical	RC-1	RC-2	RC-3	RC-4	CHHSL	TTLC
Silver	<10	<10	<10	<10	380	500
Arsenic	<10	<10	11	<10	0.07	500
Barium	49	14	29	30	5,200	10,000
Beryllium	<1.0	<1.0	<1.0	<1.0	150	75
Cadmium	<1.0	<1.0	<1.0	<1.0	1.7	100
Cobalt	13	<10	<10	<10	660	8,000
Chromium	12	<10	<10	<10	170	2,500
Copper	16	<10	<10	<10	3,000	2,500
Molybdenum	<10	<10	<10	<10	380	3,500
Nickel	30	28	66	28	1,600	2,000
Lead	19	12	10	12	150	1,000
Antimony	<10	15	36	<10	3,000	500
Selenium	<10	<10	<10	<10	380	100
Thallium	<10	<10	<10	<10	5	700
Vanadium	39	<10	13	27	530	2,400
Zinc	41	<10	<10	24	2,300	5,000

Table 8. Results of white precipitate chemical analysis by DTSC (milligram per kilogram).

CHHSL = California human health screening level; TTLC = total threshold limits concentration (a hazardous waste criteria).

a. Bold numbers indicate results above the minimum detectable concentration (MDC).

Because laboratory analysis showed arsenic levels above the California human health screening level (CHHSL) and the total threshold limits concentration (TTLC) (a hazardous waste criteria), which is a common occurrence, DTSC had a contracted analytical laboratory perform metals analysis on the precipitate to determine arsenic concentrations, and x-ray diffraction testing to determine the mineral composition, and verify that it was a naturally occurring mineral. Based on this testing, the precipitate consists of common naturally occurring minerals and does not contain elevated concentrations of metals, including arsenic. The DTSC reported the following information:

The minerals were identified as quartz and feldspars, which are rock forming minerals along with calcite, gypsum, hexahydrite and blodite. The last four are evaporite minerals that form by water dissolving materials in rock or soil and then leaving behind crystals as the water evaporates. Calcite is calcium carbonate $(CaCo_3)$ while the gypsum, hexahydrite and blodite are all sulfate minerals. The sulfate minerals consist of a sulfate group (SO_4) attached to an

anion, calcium for gypsum and magnesium and sodium for hexahydrite and blodite. These are all naturally occurring minerals very similar to epsom salt.

These results indicate that the white precipitate is composed of naturally occurring minerals. Therefore, no additional action is required.

Issue 5

<u>Tar Material</u>

The tar material encountered at the site poses a potential threat to human health because benzo(a)anthracene concentrations exceed the PRG. The tar material should be removed from the site and either properly recycled or disposed. The Response Plan should address the removal of this material.

<u>Response</u>. Runkle Canyon, LLC will remove the tar material. Attachment B provides details of the proposal.

5.0 Actions To Be Taken by Runkle Canyon, LLC

The following actions will be taken by Runkle Canyon, LLC in response to the DTSC requests and in consideration of the specific responses to these requests in Section 4.0 of this response plan:

- 1. Runkle Canyon, LLC will conduct additional MARSSIM-based soil sampling for the presence of ⁹⁰Sr and ¹³⁷Cs in Runkle Canyon areas closest to SSFL but excluding the proposed residential areas Runkle Canyon, LLC has already sampled. Attachment A contains the proposed soil sampling plan. Once the sampling results are complete, Runkle Canyon, LLC will provide a report to DTSC.
- Runkle Canyon, LLC will remove the tar material from the surface drainage area of Runkle Canyon. Attachment B contains the proposed plan for removal of this material. Prior to beginning this work Runkle Canyon, LLC will notify DTSC to coordinate any desired oversight.

These actions, in combination with the responses in Section 4.0, address the requests DTSC stated in its October 17, 2008 letter.

6.0 References

Document reference numbers from the CLRRA Standard Agreement are shown in brackets where applicable.

City of Simi Valley 2004. *Runkle Canyon Final Environmental Impact Report*. SCH No. 2002121143. May 2004 (Certified April 26, 2004). City of Simi Valley, Simi Valley, CA.

- [5] Dade Moeller & Associates. 2005a. *Radiological Health Risks from Strontium-90 in the Runkle Canyon Development Simi Valley, California*. DMA-TR-14. Dade Moeller & Associates, Inc., Richland Washington.
- [6] Dade Moeller & Associates. 2005b. Supplemental Soil Sampling for Strontium-90 in the Runkle Canyon Development, Simi Valley, California. DMA-TR-15. Dade Moeller & Associates, Inc., Richland Washington.
- Dade Moeller & Associates. 2007a. Soil Sampling Plan for the Runkle Canyon Main and Northwest Grading Areas. DMA-TR-30. Dade Moeller & Associates, Inc., Richland Washington.
- [7] Dade Moeller & Associates. 2007b. Strontium-90 Soil Sampling in Runkle Canyon, Simi Valley, California. DMA-TR-34. Dade Moeller & Associates, Inc., Richland Washington.
- [24, 25, 26, 27] Foster Wheeler Environmental Corporation. 1999. *Runkle Ranch Site Investigation*, *Simi Valley, California*. Final Report. Foster Wheeler Environmental Corporation, Costa Mesa, CA.
- [8] Harding ESE. 2000. Results of Limited Soil Sampling, Rancho Simi Property. APN 6850-130-180, Simi Valley, California. November 3, 2000. Harding ESE, Phoenix, AZ.
- [14] Miller Brooks Environmental, Inc. 2003a. Site Investigation Report of Western 350-Acre Parcel; GreenPark Runkle Canyon, LLC Runkle Canyon Property in Simi Valley, California. September 17, 2003. Miller Brooks Environmental, Inc., Huntington Beach, CA.
- [15] Miller Brooks Environmental, Inc. 2003b. Site Investigation Report of 550-Acre Parcel; GreenPark Runkle Canyon, LLC Runkle Canyon Property in Simi Valley, California. September 17, 2003. Miller Brooks Environmental, Inc., Huntington Beach, CA.
- [13] Miller Brooks Environmental, Inc. 2003c. Site Investigation Report of Southern 715-Acre Parcel; GreenPark Runkle Canyon, LLC Runkle Canyon Property in Simi Valley, California. September 17, 2003. Miller Brooks Environmental, Inc., Huntington Beach, CA.
- National Council on Radiation Protection and Measurements (NCRP). 1999. *Recommended Screening Limits for Contaminated Surface Soil and Review of Factors Relevant to Site-Specific Studies*. NCRP Report 129, National Council on Radiation Protection and Measurements, Bethesda, MD.
- [38] QST Environmental, Inc. 1999. "Results of Preliminary Soil Samples at Runkle Ranch in Simi Valley, California." Letter Report from John S. Kim to Ms. Marina Robertson, GreenPark Ventures, LLC, dated February 5, 1999.

- U.S. Environmental Protection Agency (EPA) 1995. EPA Update July 1995. U.S. Environmental Protection Agency Region IX, San Francisco, California. <u>http://www.etec.energy.gov/Health-and-Safety/Brandeis-Bardin.html</u>
- U.S. Environmental Protection Agency (EPA). 2001. Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). EPA-402-R-97-016, Rev. 1 (also NUREG-1575, Rev. 1, DOE/EH-0624, Rev. 1). U.S. Environmental Protection Agency, Washington, DC. www.epa.gov/radiation/marssim/obtain.htm
- U.S. Environmental Protection Agency (EPA). 2004. *Preliminary Remediation Goals for Radionuclides*. <u>http://epa-prgs.ornl.gov/radionuclides/</u>, updated August 4, 2004. U.S. Environmental Protection Agency, Washington, DC.

DMA-TR-38
Soil Sampling Plan for Proposed
Non-residential Eastern and Southeastern Areas of Runkle Canyon
Tracy A. Ikenberry, CHP Clark B. Barton, CHP
December 2008
Prepared for Runkle Canyon, LLC Los Angeles, CA 90024
Dade Moeller & Associates, Inc. 1835 Terminal Drive, Suite 200 Richland, WA 99354

Soil Sampling Plan for Proposed Non-residential Eastern
and Southeastern Areas of Runkle Canyon

December 2008

LIMITATIONS

Dade Moeller & Associates prepared this soil sampling plan pursuant to the directions received from Runkle Canyon, LLC. Our work is based on information available at the time of publication.

Dade Moeller & Associates

ii

Soil Sampling Plan for Proposed Non-re and Southeastern Areas of Runkle Canyo	esidential Eastern on	December 200
	TABLE OF CONTENT	S
2.0 FUNCTIONS AND REQ3.0 NUMBER OF SAMPLE4.0 SAMPLE COLLECTION	QUIREMENTS S AND LOCATIONS N AND HANDLING	
		FOR COMPARING A MEDIAN SSIM)
Dade Moeller & Associates	iii	DMA-TR-3

Soil Sampling Plan for Proposed Non-residential Eastern and Southeastern Areas of Runkle Canyon	December 2008
Page left intentionally blank.	
r ngo keto meendominiy bininki	
Dade Moeller & Associates	DMA-TR-38

December 2008

1.0 INTRODUCTION

Runkle Canyon is a proposed residential development adjacent to existing neighborhoods at the southern edge of Simi Valley, California accessed at the end of Sequoia Avenue. The California Department of Toxic Substances Control (DTSC) reviewed the Runkle Canyon soil sampling documentation with respect to the California Land Reuse and Revitalization Act (CLRRA) agreement between DTSC and the property owner Runkle Canyon, LLC. DTSC requested that additional soil sampling for ⁹⁰Sr be conducted on the site.

Several soil sampling campaigns had been earlier been conducted as part of the environmental characterization of the site (QST 1999; Foster Wheeler 1999; Harding ESE 2000, Miller Brooks 2003a, 2003b, 2003c). The sampling conducted in 1998, 1999 and 2000 appeared to indicate the presence of strontium-90 (90 Sr) in surface soil; there was no indication of other radionuclides analyzed in the samples – cesium-137 (137 Cs) and tritium (3 H). Subsequent sampling conducted at the locations of five highest samples (Dade Moeller & Associates 2005b) showed much lower 90 Sr levels than initially indicated. In addition, a MARSSIM-based sampling of the proposed residential area commissioned by Runkle Canyon, LLC in 2007 showed the levels to be even lower and consistent with the local background for 90 Sr (Dade Moeller & Associates 2007, USEPA 1995). The State of California analyzed split soil samples from the 2007 sampling and showed lower results consistent with the later sampling.

Runkle Canyon, LLC has agreed to conduct additional MARSSIM-based soil sampling in proposed non-residential eastern and southeastern portions of the site. These areas are closest to the Santa Susana Field Laboratory (SSFL). Runkle Canyon, LLC has also agreed to have samples analyzed for both ⁹⁰Sr and ¹³⁷Cs to see if additional information can be gained on the ratios of these radionuclides in soil.

This sampling plan directs the collection of additional samples from the eastern and southeastern areas of the Runkle Canyon site which will be proposed non-residential areas – no homes will be built in this area and no or minimal grading will take place. The objective of this additional sampling is to provide further quantitative information to ensure that the potential risk to members of the public remains well below acceptable risk guidelines.

2.0 FUNCTIONS AND REQUIREMENTS

Soil sampling of the Runkle Canyon area includes the following work functions to be performed by an environmental sampling firm and an analytical laboratory contracted by Runkle Canyon, LLC. Dade Moeller & Associates will provide oversight and technical direction as requested by Runkle Canyon, LLC and will prepare a report on the analytical results.

A contracted environmental sampling firm will:

- Review this Plan and develop a soil sampling protocol that that is consistent with ASTM C998-05 "Standard Practice for Sampling Surface Soil for Radionuclides," subject to additional requirements noted in Section 4.0.
- Notify Runkle Canyon, LLC of all planned departures from the Plan.

Dade Moeller & Associates

1

Soil Sampling Plan for Proposed Non-residential Eastern December 2008 and Southeastern Areas of Runkle Canyon Identify potential hazards during sampling and develop controls. Provide safety briefings for sampling personnel. Provide all required safety and personal protective equipment. Perform soil sampling. Document all survey activities and observations in a controlled logbook or equivalent. Package samples and ship to the analytical laboratory in a manner that meets all chain-of-custody requirements. A contracted analytical laboratory will: Perform requested sample analyses for ⁹⁰Sr and ¹³⁷Cs and provide requested data as stated in Section 5.0 of this plan. Interpret the analytical data and prepare a final report on the analytical results. **3.0 NUMBER OF SAMPLES AND LOCATIONS** Determination of the number of sampling locations described below was developed using methods discussed in the Multi-Agency Radiation Survey and Site Investigation Manual (EPA 2001). The areas to be sampled are considered to be Class 3 areas using the MARSSIM criteria. Class 3 areas are those considered to be uncontaminated or minimally affected by contaminants. This has been demonstrated by the previously noted sampling reports. A site-specific radiological risk analysis of the Runkle Canyon area (Ikenberry 2005a) estimated that even "highly exposed" residents of Runkle Canyon would have an annual risk level of 1 x 10⁻⁶ (one in one million) at a concentration of about 1.1 pCi/g of ⁹⁰Sr if it was assumed to be distributed evenly throughout the surface soil. Typical residents of Runkle Canyon and visitors to the undisturbed open spaces would experience much lower levels of risk. MARSSIM requires a Derived Concentration Guideline Level (DCGL) as one of the parameters to establish the number of samples required. For the non-residential areas in this sampling campaign soil screening limits from the National Council on Radiation Protection and Measurements Report No. 129 (NCRP 1999) were used. Because this is a non-residential area, the "No Food Suburban" exposure scenario was used; a DCGL was established at 1.7 pCi/g, which corresponds to an annual risk of 1×10^{-7} for a "highly exposed" individual at the 95th percentile. The number of samples required was determined using the Visual Sample Plan (VSP) software version 5.3 (Battelle Memorial Institute 2008; see Appendix A). VSP incorporates the MARSSIM method; Appendix A contains the VSP output. Table 1 shows a summary of the sampling parameters. A total of 14 samples were determined to be adequate (with 20% allowance) with α and β errors each set to 5%. Figure 1 shows the Runkle Canyon main and northwest grading areas with the overlaid soil sampling grid. Table 2 shows the sample locations and coordinates.

The sampling area was selected to include non-residential area closer to the SSFL than the proposed residential area sampled in 2007; the residential area previously sampled was excluded. In addition, the sampling areas was selected to include all of the "higher" samples from earlier analyses (Dade Moeller & Associates 2005b). To accomplish this, a small separate sampling

Dade Moeller & Associates

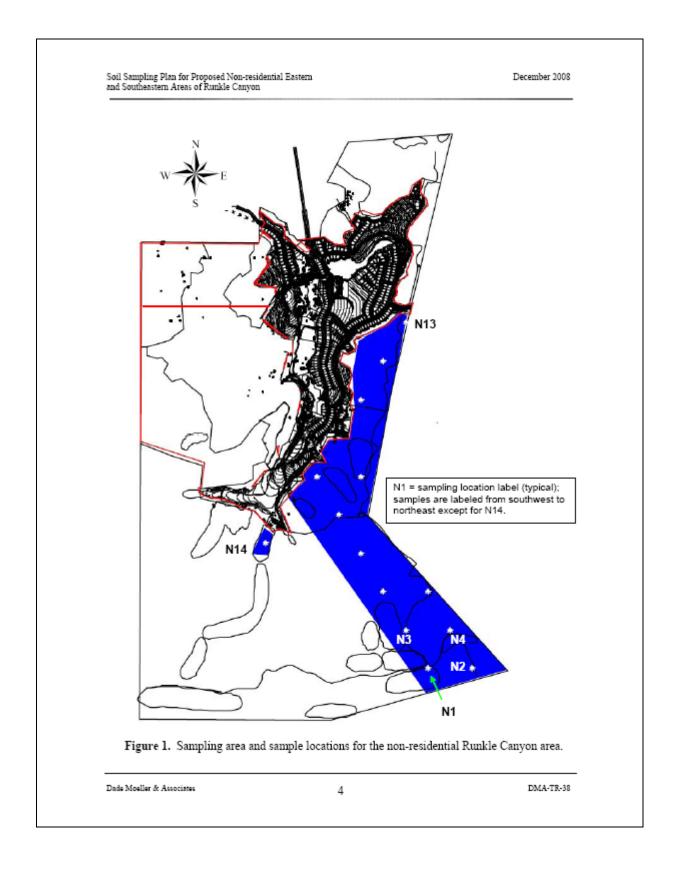
2

December 2008

area was included to the west of the main sampling area and directly south of the previously sampled residential area as shown in Figure 1. This area will be the location of sample N14 as noted in Table 2.

 Table 1. Sampling parameters for the eastern and southeastern non-residential area.

Parameter	Value	Comments
Survey class	3	No significant contamination expected
DCGL	1.7 pCi/g ⁹⁰ Sr	Based on NCRP #129 No Food Suburban, 1 x 10 ⁻⁷ yr ⁻¹ risk
Std deviation	0.015 pCi/g	Based on 2007 sampling
α and β errors	5 %	Typical
Samples	14	Includes 20% overage (3 samples)
Area	267 acres	• • • •


Table 2. Sample Location Coordinates and Sample Designation.

Latitude (North)	Longitude (West)	Label ¹	Value	Туре	Historica 1
34°13'26.82"	-118° 43'21.51"	N 01		Systematic	
34°13'25.49"	-118° 43'09.51"	N 02		Systematic	
34°13'34.95"	-118° 43'28.05"	N 03		Systematic	
34°13'35.12"	-118° 43'15.43"	N 04		Systematic	
34°13'42.05"	-118° 43'32.37"	N 05		Systematic	
34°13'43.02"	-118° 43'20.56"	N 06		Systematic	
34°13'52.56"	-118° 43'39.01"	N 07		Systematic	
34°14'00.69"	-118° 43'46.43"	N 08		Systematic	
34°14'09.75"	-118° 43'52.44"	N 09		Systematic	
34°14'08.02"	-118° 43'39.57"	N 10		Systematic	
34°14'27.10"	-118° 43'43.47"	N 11		Systematic	
34°14'35.63"	-118° 43'34.77"	N 12		Systematic	
34°14'47.58"	-118° 43'24.37"	N 13		Systematic	12
34°13'55.74"	-118° 44'05.75"	N 14		Systematic	[

¹ Labels start in the lower lefthand (southeast) corner of the grid in Figure 1 and move north, west to east except for N14, which is last since it is in a separate sampling area.

Dade Moeller & Associates

3

December 2008

4.0 SAMPLE COLLECTION AND HANDLING

Collection of soil samples is required to determine the concentration of the radionuclide strontium-90 in soil. The soil sampling protocol will follow ASTM C998 "Standard Practice for Sampling Surface Soil for Radionuclides" or equivalent with the following modifications: one $1-m^2$ area will be cleared and sampled rather than two $1-m^2$ areas (with 5 cores or plugs rather than 10); and surface soil samples will be taken from a depth of 0 to 6 inches (0 to 15 cm) if possible.^a Shallower samples (0 to 3 inches) are acceptable if soil conditions prevent deeper sampling, with appropriate documentation in the sampling logbook. Samples shall be taken as close to the locations in Table 1 as feasible. Actions shall be taken to prevent cross-contamination between samples. Soil will be sieved using a 10 mesh sieve to remove vegetation and pebbles; if there is difficulty using 10 mesh a slightly larger mesh size (4) may be considered. A minimum of 500 ml aliquots (approximately 1 kg each) will be taken and provided to the analytical laboratory using standard chain of custody procedures and forms. Samples shall be collected by qualified individuals using the appropriate equipment and procedures. Upon request by DTSC, split soil samples will be collected and provided to DTSC for independent analysis for the presence of radionuclides.

All sample media, personal protective equipment, and other materials or equipment used during the sampling may be properly disposed as sanitary waste. The waste is <u>not</u> considered radioactive waste.

Activities associated with the soil sampling should be planned and monitored to assure that the health and safety of those performing the sampling and other personnel are adequately protected. Health and safety concerns at this undeveloped site may include heat or cold depending upon the time of year, sharp objects, falling objects, tripping hazards, and biological hazards such as insects and snakes. It is expected that environmental sampling firm will conduct all sampling tasks consistent with their policies and procedures for health and safety. All personnel should be briefed on potential safety hazards prior to performing or observing tasks.

5.0 SAMPLE ANALYSIS

The analytical laboratory shall have written procedures that document its analytical capabilities for 90 Sr in soil, and a Quality Assurance/Quality Control (QA/QC) program that ensures the validity of the analytical results. The laboratory shall have the following minimum detectable concentration (MDC) capabilities:

- 0.05 pCi/g or lower for ⁹⁰Sr in soil
- 0.18 pCi/g and preferably less than 0.1 pCi/g for ¹³⁷Cs in soil.

The laboratory should have performance evaluation results from a recognized laboratory accreditation program, and should be able to provide QA audits or other records to verify its ability to produce valid results. Equipment calibrations shall be performed using National Institute of Standards and Technology (NIST) traceable reference radionuclide standards. For

Dade Moeller & Associates

^a One of the purposes of ASTM C998 is to provide samples for analysis of radionuclides following a recent airborne release, and to account for associated variability in surface soil deposition. These conditions do not apply for Runkle Canyon soil sampling; therefore modifications to the soil sampling procedure are applicable.

December 2008

any sample result greater than 0.5 pCi/g 90 Sr, another analysis shall be performed of that soil sample. A complete analytical report shall be provided documenting the above information and providing quantitative numerical sample results (regardless if positive, negative or below the MDC), total propagated uncertainty, and the MDC. An explanation of total propagated uncertainty and the calculation of the MDC shall be provided. Additional requirements shall be in force as agreed with Runkle Canyon, LLC.

6.0 REPORTING

Upon completion of the sampling and laboratory analysis, Dade Moeller & Associates will prepare a report interpreting and analyzing the data.

7.0 REFERENCES

Foster Wheeler Environmental Corporation. 1999. *Runkle Ranch Site Investigation*, *Simi Valley, California*. Final Report. Foster Wheeler Environmental Corporation, Costa Mesa, CA.

Harding ESE. 2000. Results of Limited Soil Sampling, Rancho Simi Property. APN 6850-130-180, Simi Valley, California. November 3, 2000. Harding ESE, Phoenix, AZ.

Dade Moeller & Associates. 2005a. Radiological Health Risks from Strontium-90 in the Runkle Canyon Development Simi Valley, California. DMA-TR-14. Dade Moeller & Associates, Inc., Richland Washington.

Dade Moeller & Associates. 2005b. Supplemental Soil Sampling for Strontium-90 in the Runkle Canyon Development, Simi Valley, California. DMA-TR-15. Dade Moeller & Associates, Inc., Richland Washington.

Dade Moeller & Associates. 2007. Strontium-90 Soil Sampling in Runkle Canyon, Simi Valley, California. DMA-TR-34. Dade Moeller & Associates, Inc., Richland Washington.

Miller Brooks Environmental, Inc. 2003a. Site Investigation Report of Western 350-Acre Parcel; GreenPark Runkle Canyon, LLC Runkle Canyon Property in Simi Valley, California. September 17, 2003. Miller Brooks Environmental, Inc., Huntington Beach, CA.

Miller Brooks Environmental, Inc. 2003b. Site Investigation Report of 550-Acre Parcel; GreenPark Runkle Canyon, LLC Runkle Canyon Property in Simi Valley, California. September 17, 2003. Miller Brooks Environmental, Inc., Huntington Beach, CA.

Miller Brooks Environmental, Inc. 2003c. Site Investigation Report of Southern 715-Acre Parcel; GreenPark Runkle Canyon, LLC Runkle Canyon Property in Simi Valley, California. September 17, 2003. Miller Brooks Environmental, Inc., Huntington Beach, CA.

National Council on Radiation Protection and Measurements (NCRP). 1999. *Recommended Screening Limits for Contaminated Surface Soil and Review of Factors Relevant to Site-Specific Studies.* NCRP Report No. 129, National Council on Radiation Protection and Measurements, Bethesda, MD.

Dade Moeller & Associates

6

December 2008

QST Environmental, Inc. 1999. "Results of Preliminary Soil Samples at Runkle Ranch in Simi Valley, California." Letter Report from John S. Kim to Ms. Marina Robertson, GreenPark Ventures, LLC, dated February 5, 1999.

U.S. Environmental Protection Agency (EPA) 1995. EPA Update July 1995. U.S. Environmental Protection Agency Region IX, San Francisco, California. http://www.etec.energy.gov/Health-and-Safety/Brandeis-Bardin.html

U.S. Environmental Protection Agency (EPA). 2001. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*. EPA-402-R-97-016, Rev.1 (also NUREG-1575, Rev. 1, DOE/EH-0624, Rev. 1). U.S. Environmental Protection Agency, Washington, DC. URL: <u>www.epa.gov/radiation/marssim/obtain.htm</u>

Dade Moeller & Associates

7

December 2008

APPENDIX A. SYSTEMATIC SAMPLING LOCATIONS FOR COMPARING A MEDIAN WITH A FIXED THRESHOLD (NONPARAMETRIC - MARSSIM)

Summary

This report summarizes the sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan.

The following table summarizes the sampling design developed. A figure that shows sampling locations in the field and a table that lists sampling location coordinates are provided as **Figure 1** and **Table 1**, respectively, in the main text of this sampling plan.

SUMMAI	RY OF SAMPLING DESIGN
Primary Objective of Design	Compare a site mean or median to a fixed threshold
Type of Sampling Design	Nonparametric
Sample Placement (Location) in the Field	Systematic with a random start location
Working (Null) Hypothesis	The median(mean) value at the site exceeds the threshold
Formula for calculating number of sampling locations	Sign Test - MARSSIM version
Calculated total number of samples	14
Number of samples on map ^a	14
Number of selected sample areas ^b	2
Specified sampling area	11,645,000 ft ² (267 acres)
Size of grid / Area of grid cell d	973 feet / 820,500 ft ² (19 acres)
Grid pattern	Triangular

^a This number may differ from the calculated number because of 1) grid edge effects, 2) adding judgment samples, or 3) selecting or unselecting sample areas.
^b The number of selected sample areas is the number of colored areas on the map of the site. These

^b The number of selected sample areas is the number of colored areas on the map of the site. These sample areas contain the locations where samples are collected.

^c The sampling area is the total surface area of the selected colored sample areas on the map of the site. ^d Size of grid / Area of grid cell gives the linear and square dimensions of the grid used to systematically place samples.

Primary Sampling Objective

The primary purpose of sampling at this site is to compare a site median or mean value with a fixed threshold. The working hypothesis (or 'null' hypothesis) is that the median (mean) value at the site is equal to or exceeds the threshold. The alternative hypothesis is that the median (mean) value is less than the threshold. VSP calculates the number of samples required to reject the null hypothesis in favor of the alternative one, given a selected sampling approach and inputs to the associated equation.

Selected Sampling Approach

A nonparametric systematic sampling approach with a random start was used to determine the number of samples and to specify sampling locations. A nonparametric formula was chosen because the conceptual model and historical information (e.g., historical data from this site or a very similar site) indicate that typical parametric assumptions may not be true.

Both parametric and non-parametric equations rely on assumptions about the population. Typically, however, non-parametric equations require fewer assumptions and allow for more uncertainty about the

Dade Moeller & Associates

8

December 2008

statistical distribution of values at the site. The trade-off is that if the parametric assumptions are valid, the required number of samples is usually less than if a non-parametric equation was used.

Locating the sample points over a systematic grid with a random start ensures spatial coverage of the site. Statistical analyses of systematically collected data are valid if a random start to the grid is used. One disadvantage of systematically collected samples is that spatial variability or patterns may not be discovered if the grid spacing is large relative to the spatial patterns.

Number of Total Samples: Calculation Equation and Inputs

The equation used to calculate the number of samples is based on a Sign test (see PNNL 13450 for discussion). For this site, the null hypothesis is rejected in favor of the alternative one if the median(mean) is sufficiently smaller than the threshold. The number of samples to collect is calculated so that if the inputs to the equation are true, the calculated number of samples will cause the null hypothesis to be rejected.

The formula used to calculate the number of samples is:

$$n = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{4(SignP - 0.5)^2}$$

where

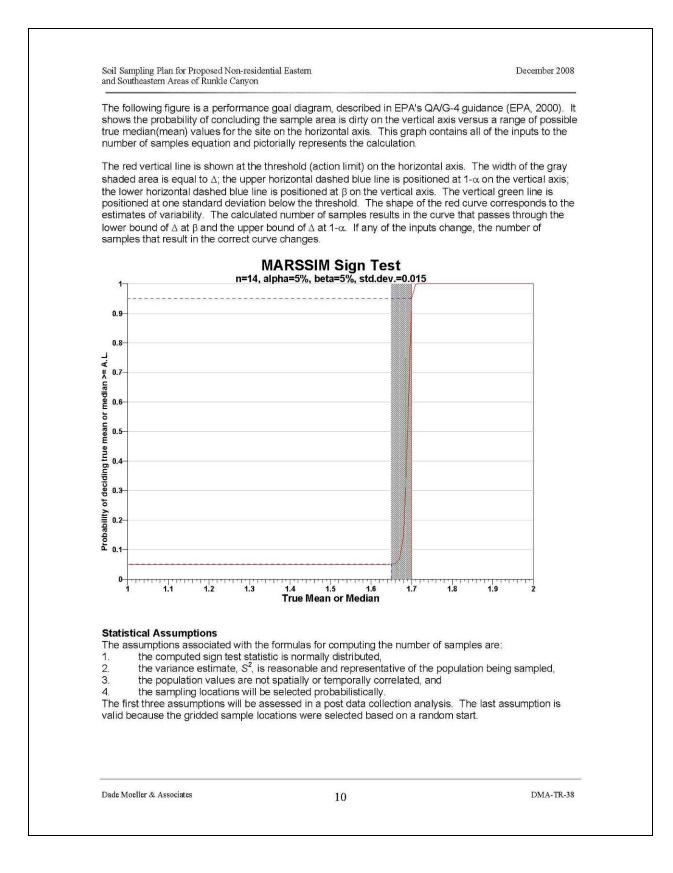
$$SignP = \Phi\left(\frac{\Delta}{s_{total}}\right)$$

 $\Phi(z)$ is the cumulative standard normal distribution on (- ∞ , z) (see PNNL-13450 for details),

n is the number of samples,

- S_{total} is the estimated standard deviation of the measured values including analytical error,
- Δ is the width of the gray region,
- α is the acceptable probability of incorrectly concluding the site median(mean) is less than the threshold,
- β is the acceptable probability of incorrectly concluding the site median(mean) exceeds the threshold,
- $Z_{1-\infty}$ is the value of the standard normal distribution such that the proportion of the distribution less than $Z_{1-\infty}$ is 1- ∞ ,
- $Z_{1-\beta}$ is the value of the standard normal distribution such that the proportion of the distribution less than $Z_{1-\beta}$ is 1- β .

Note: MARSSIM suggests that the number of samples should be increased by at least 20% to account for missing or unusable data and uncertainty in the calculated value of n. VSP allows a user-supplied percent overage as discussed in MARSSIM (EPA 2000, p. 5-33).


The values of these inputs that result in the calculated number of sampling locations are:

Analida	llyte nª	Parameter						
Analyte	n	S	Δ	α	β	Z _{1-a} ^b	Z1-8	
	14	0.015	0.05	0.05	0.05	1.64485	1.64485	

 $^{\circ}$ The final number of samples has been increased by the MARSSIM Overage of 20%. $^{\circ}$ This value is automatically calculated by VSP based upon the user defined value of α . $^{\circ}$ This value is automatically calculated by VSP based upon the user defined value of β .

Dade Moeller & Associates

9

December 2008

Sensitivity Analysis

The sensitivity of the calculation of number of samples was explored by varying the standard deviation, lower bound of gray region (% of action level), beta (%), probability of mistakenly concluding that μ > action level and alpha (%), probability of mistakenly concluding that μ < action level. The following table shows the results of this analysis.

		١	lumber of	Sample	s		
AL=1.	7	α	=5	α	=10	α	=15
AL=1.	1	s=0.03	s=0.015	s=0.03	s=0.015	s=0.03	s=0.015
	β=5	14	14	11	11	10	10
LBGR=90	β=10	11	11	9	9	8	8
	β=15	10	10	8	8	6	6
	β=5	14	14	11	11	10	10
LBGR=80	β=10	11	11	9	9	8	8
	β=15	10	10	8	8	6	6
	β=5	14	14	11	11	10	10
LBGR=70	β=10	11	11	9	9	8	8
	β=15	10	10	8	8	6	6

s = Standard Deviation

LBGR = Lower Bound of Gray Region (% of Action Level)

 β = Beta (%), Probability of mistakenly concluding that μ > action level

 α = Alpha (%), Probability of mistakenly concluding that μ < action level

AL = Action Level (Threshold)

Recommended Data Analysis Activities

Post data collection activities generally follow those outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify to the extent possible the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine whether they are adequate in both quality and quantity to support the primary objective of sampling.

Because the primary objective for sampling for this site is to compare the site median(mean) value with a threshold value, the data will be assessed in this context. Assuming the data are adequate, at least one statistical test will be done to perform a comparison between the data and the threshold of interest. Results of the exploratory and quantitative assessments of the data will be reported, along with conclusions that may be supported by them.

This report was automatically produced' by Visual Sample Plan (VSP) software version 5.3. Software and documentation available at http://dqo.pnl.gov/vsp Software copyright (c) 2008 Battelle Memorial Institute. All rights reserved. * - The report contents may have been modified or reformatted by end-user of software.

Dade Moeller & Associates

11

Attachment B Response Plan for Removal of Tar Material

INLAND EMPIRE, INC. EN VIRONMENTAL - GEOTECHNICAL - MATERIALS Project No. A8314-77-03 November 28, 2008 VIA EMAIL Mr. Chuck Heffernan Runkle Canyon, LLC 27240 Turnberry Lane, Suite 100 Valencia, CA 91355 Subject: RUNKLE CANYON SIMI VALLEY, CALIFORNIA RESPONSE PLAN FOR REMOVAL OF TAR MATERIAL Mr. Heffernan: In accordance with your request on behalf of Runkle Canyon, LLC (the Client), we are providing Response Plan for the removal of the tar-like material present within the drainage area of Runkle Canyon Site). 1.0 Site Description Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a northor 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parcer small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre par magneting of the 550-acre parcel. West of the stream channel are rolling hills that comprise majority of the 550-acre parcel. West of the stream channel are rolling hills that comprises the cas portion of the 350-acre parcel. West of the stream channel are rolling hills that comprises the cas portion of the 350-acre parcel. The portion of the 350-acre parcel and the 715-acre parcel appears to flow onto the souther end of the 550-acre parcel along three drainage courses. The is where the three drainages converge on the 550-acre parcel along three drainage courses. The is subrace mining was historically performed at the Site for sand and gravel products. Large volumes of ste processed sand and gravel material from the former quary operation have been placed within the Fish area of the Site. The piles of material from the former quary operation have been placed within the Fish area of the Site. The piles of material from the garry appear to	NLAND E	
Project No. A8314-77-03 November 28, 2008 VIA EMAIL Mr. Chuck Hefferman Runkle Canyon, LLC Z7240 Tumberry Lane, Suite 100 Valencia, CA 91355 Subject: RUNKLE CANYON SIMI VALLEY, CALIFORNIA RESPONSE PLAN FOR REMOVAL OF TAR MATERIAL Mr. Heffernan: In accordance with your request on behalf of Runkle Canyon, LLC (the Client), we are providing Response Plan for the removal of the tar-like material present within the drainage area of Runkle Canyon Site). 1.0 Site Description Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a north 350 acre parcel, and a southern 715 acre parcel. Three is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parce small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre parcel smanders northward across the valley floor. East of the stream channel are rolling hills that comprises majority of the 550-acre parcel. West of the stream channel is a steep ridge line that comprises the cas portion of the 350-acre parcel. West of the stream channel is a steep ridge line that comprises the as portion of the 550-acre parcel. The portion of the 350-acre parcel along three drainage courses. The is where the three drainages converge on the 550-acre parcel along three drainage courses. The is where the three drainages converge on the 550-acre parcel along three drainage courses. The is sufface mining was historically performed at the Site for sand and gravel products. Large volumes of site. Sufface mining was historically performed at the Site for sand and gravel products. Large volumes of site. Sufface mining was historically performed at the Site for sand and gravel products. Large volumes of site. Sufface mining was historically performed at the Site for sand and gravel products. Large v	NVIRC	NMENIAL = GEVIECHNICAL = MAIEKIALS
Mr. Chuck Heffernan Runkle Canyon, LLC Z7240 Turnberry Lane, Suite 100 Valencia, CA 91355 Subject: RUNKLE CANYON SIMI VALLEY, CALIFORNIA RESPONSE PLAN FOR REMOVAL OF TAR MATERIAL Mr. Heffernan: In accordance with your request on behalf of Runkle Canyon, LLC (the Client), we are providing Response Plan for the removal of the tar-like material present within the drainage area of Runkle Canyon Site). 1.0 Site Description Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a north 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parce maind intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre pare manders northward across the valley floor. East of the stream channel are rolling hills that comprises majority of the 550-acre parcel. The portion of the 350-acre parcel and the 715-acre par parcel appears to flow onto the southern end of the 550-acre parcel and the 715-acre par sportion of the 350-acre parcel. The portion of the 350-acre parcel and the 715-acre par parcel appears to flow onto the southern end of the 550-acre parcel and the 715-acre par sporten of the stot-acre parcel. The portion of the 350-acre parcel and the 715-acre par sporten of the stot-acre parcel of the forther of the ridge line that comprises the eas portion of the stot-acre parcel of the forther of the stot-acre parcel and the 715-acre par sporten be three drainages converge on the 550-acre parcel and gravel products. Large volumes of se processed sand and gravel material from the former quarry operation have been placed within the Fish area of the Site. The piles of material from the quary appear to be in excess of 30 feet think in areas where stream has eroded channels throu	Project No. A	3314-77-03
Runkle Canyon, LLC 27240 Turnberty Lane, Suite 100 Valencia, CA 91355 Subject: RUNKLE CANYON SIMI VALLEY, CALIFORNIA RESPONSE PLAN FOR REMOVAL OF TAR MATERIAL Mr. Heffernan: In accordance with your request on behalf of Runkle Canyon, LLC (the Client), we are providing Response Plan for the removal of the tar-like material present within the drainage area of Runkle Canyon Site). I.O Site Description Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a north 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parce small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-are par meanders northward across the valley floor. East of the stream channel are rolling hills that comprise majority of the 530-acre parcel. West of the stream channel is a steep ridge line that comprises the cas portion of the 530-acre parcel. West of the stream channel is a steep ridge line that comprises the cas portion of the 530-acre parcel. West of the stream channel is a steep ridge line that comprises the cas parcel appears to flow onto the southern end of the 550-acre parcel and the 715-parcel appears to flow onto the southern end of the 550-acre parcel and gravel material from the former quary operation have been placed within the Fish area of the Site. The piles of material from the quary appear to be in excess of 30 feet think in areas where stream has eroded channels through them. Miscellancous defris, currently exposed in the stream chan walls, was observed to have been buried by the aggregate material placed in the Fish Tail area. The de included items such as, pipes of various diameter, length, and material, concrete and asphalt rubble, I sheets of rubber material presumed to be remnants of the	VIA EMAIL	
SIMI VALLEY, CALIFORNIA RESPONSE PLAN FOR REMOVAL OF TAR MATERIAL Mr. Heffernan: In accordance with your request on behalf of Runkle Canyon, LLC (the Client), we are providing Response Plan for the removal of the tar-like material present within the drainage area of Runkle Canyon Site). 1.0 Site Description Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a northw 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parce small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre par meanders northward across the valley floor. East of the stream channel are rolling hills that comprises majority of the 550-acre parcel. West of the stream channel is a steep ridge line that comprises the eas portion of the 350-acre parcel. West of the stream channel is a steep ridge line that comprises the eas portion of the 350-acre parcel. The portion of the 350-acre parcel along three drainage courses. The where the three drainages converge on the 550-acre parcel along three drainage courses. The is where the three drainages converge on the 550-acre parcel along three drainage courses. The is stream ining was historically performed at the Site for sand and gravel products. Large volumes of se processed sand and gravel material from the quarry appear to be in excess of 30 feet think in areas where stream has eroded channels through them. Miscellancous debris, currently exposed in the stream chan walls, was observed to have been buried by the aggregate material placed in the Fish Tail area. The de included items such as, pipes of various diameter, length, and material, concrete and asphalt rubble, I sheets of rubber material presumed to be remnants of the former conveyor system, tires, and a	Runkle Canyo 27240 Turnbe	n, LLC ry Lane, Suite 100
In accordance with your request on behalf of Runkle Canyon, LLC (the Client), we are providing Response Plan for the removal of the tar-like material present within the drainage area of Runkle Canyon Site). 1.0 Site Description Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a northwas 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parce small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre par meanders northward across the valley floor. East of the stream channel are rolling hills that comprises majority of the 550-acre parcel. West of the stream channel is a steep ridge line that comprises the eass portion of the 350-acre parcel. The portion of the 350-acre parcel west of the ridgeline appears to d through an unnamed north-south trending canyon to the west of Runkle Canyon. Drainage from the 715-parcel appears to flow onto the southern end of the 550-acre parcel along three drainage courses. The is where the three drainages converge on the 550-acre parcel has been referred to as the "Fish Tail" area of Site. Surface mining was historically performed at the Site for sand and gravel products. Large volumes of se processed sand and gravel material from the quary appear to be in excess of 30 feet think in areas where stream has eroded channels through them. Miscellaneous debris, currently exposed in the stream channel and wells, was observed to have been buried by the aggregate material placed in the Fish Tail area. The de included items such as, pipes of various diameter, length, and material, concrete and asphalt rubble, I sheets of rubber material presumed to be remnants of the former conveyor system, tires, and a black soli	Subject:	SIMI VALLEY, CALIFORNIA
Response Plan for the removal of the tar-like material present within the drainage area of Runkle Canyon Site). 1.0 Site Description Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a northwast 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parce small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre par meanders northward across the valley floor. East of the stream channel are rolling hills that comprises majority of the 550-acre parcel. West of the stream channel is a steep ridge line that comprises the east portion of the 350-acre parcel. The portion of the 350-acre parcel west of the ridgeline appears to d through an unnamed north-south trending canyon to the west of Runkle Canyon. Drainage from the 715- parcel appears to flow onto the southern end of the 550-acre parcel along three drainage courses. The where the three drainages converge on the 550-acre parcel has been referred to as the "Fish Tail" area of Site. Surface mining was historically performed at the Site for sand and gravel products. Large volumes of set processed sand and gravel material from the former quarry operation have been placed within the Fish area of the Site. The piles of material from the former quarry operation have been placed within the Fish area of the Site. The piles of material from the quarry appear to be in excess of 30 feet think in areas where stream has eroded channels through them. Miscellaneous debris, currently exposed in the stream chan walls, was observed to have been buried by the aggregate material placed in the Fish Tail area. The de included items such as, pipes of various diameter, length, and material, concrete and asphalt rubble. I sheets o	Mr. Heffernar	:
Runkle Canyon is located at the terminus of Sequoia Avenue in the City of Simi Valley, California. property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a north 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parce small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre parce ameanders northward across the valley floor. East of the stream channel are rolling hills that comprise majority of the 550-acre parcel. West of the stream channel is a steep ridge line that comprises the east portion of the 350-acre parcel. The portion of the 350-acre parcel west of the ridgeline appears to d through an unnamed north-south trending canyon to the west of Runkle Canyon. Drainage from the 715-parcel appears to flow onto the southern end of the 550-acre parcel along three drainage courses. The where the three drainages converge on the 550-acre parcel has been referred to as the "Fish Tail" area of Site.	Response Pla	
property consists of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a northe 350 acre parcel, and a southern 715 acre parcel. There is no known street address for the property. The Site is generally a north-south trending valley extending though the central part of the 550 acre parcel small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre parcel meanders northward across the valley floor. East of the stream channel are rolling hills that comprises majority of the 550-acre parcel. West of the stream channel is a steep ridge line that comprises the eas portion of the 350-acre parcel. The portion of the 350-acre parcel west of the ridgeline appears to d through an unnamed north-south trending canyon to the west of Runkle Canyon. Drainage from the 715- parcel appears to flow onto the southern end of the 550-acre parcel along three drainage courses. The where the three drainages converge on the 550-acre parcel has been referred to as the "Fish Tail" area of Site. Surface mining was historically performed at the Site for sand and gravel products. Large volumes of se processed sand and gravel material from the quarry appear to be in excess of 30 feet think in areas where stream has eroded channels through them. Miscellaneous debris, currently exposed in the stream chan walls, was observed to have been buried by the aggregate material placed in the Fish Tail area. The de included items such as, pipes of various diameter, length, and material, concrete and asphalt rubble, I sheets of rubber material presumed to be remnants of the former conveyor system, tires, and a black soli		1.0 Site Description
small intermittent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre par meanders northward across the valley floor. East of the stream channel are rolling hills that comprise majority of the 550-acre parcel. West of the stream channel is a steep ridge line that comprises the eas portion of the 350-acre parcel. The portion of the 350-acre parcel west of the ridgeline appears to d through an unnamed north-south trending canyon to the west of Runkle Canyon. Drainage from the 715- parcel appears to flow onto the southern end of the 550-acre parcel along three drainage courses. The is where the three drainages converge on the 550-acre parcel has been referred to as the "Fish Tail" area of Site. Surface mining was historically performed at the Site for sand and gravel products. Large volumes of se processed sand and gravel material from the former quarry operation have been placed within the Fish area of the Site. The piles of material from the quarry appear to be in excess of 30 feet think in areas where stream has eroded channels through them. Miscellaneous debris, currently exposed in the stream chan walls, was observed to have been buried by the aggregate material placed in the Fish Tail area. The de included items such as, pipes of various diameter, length, and material, concrete and asphalt rubble, I sheets of rubber material presumed to be remnants of the former conveyor system, tires, and a black soli	property cons	sts of three parcels totaling approximately 1,615 acres; a northeast 550 acre parcel, a north
processed sand and gravel material from the former quarry operation have been placed within the Fish area of the Site. The piles of material from the quarry appear to be in excess of 30 feet think in areas where stream has eroded channels through them. Miscellaneous debris, currently exposed in the stream char walls, was observed to have been buried by the aggregate material placed in the Fish Tail area. The de included items such as, pipes of various diameter, length, and material, concrete and asphalt rubble, I sheets of rubber material presumed to be remnants of the former conveyor system, tires, and a black soli	small intermit neanders nor najority of the bortion of the hrough an un parcel appear where the three	tent stream, which appears to drain the majority of the 550-acre parcel and the 715-acre p hward across the valley floor. East of the stream channel are rolling hills that comprise 550-acre parcel. West of the stream channel is a steep ridge line that comprises the ea 350-acre parcel. The portion of the 350-acre parcel west of the ridgeline appears to named north-south trending canyon to the west of Runkle Canyon. Drainage from the 715 to flow onto the southern end of the 550-acre parcel along three drainage courses. The
	processed san area of the Sit stream has en walls, was ob ncluded item sheets of rubl	d and gravel material from the former quarry operation have been placed within the Fish e. The piles of material from the quarry appear to be in excess of 30 feet think in areas when oded channels through them. Miscellaneous debris, currently exposed in the stream ch served to have been buried by the aggregate material placed in the Fish Tail area. The c s such as, pipes of various diameter, length, and material, concrete and asphalt rubble, er material presumed to be remnants of the former conveyor system, tires, and a black so

2.0 Project Description and Objective

A tar material has been observed to be buried within piles of mined aggregate (sand and gravel) within the "Fish Tail" area of the Site. Seeps of the tar material are exposed within a section of the east wall of the stream channel that has been cut trough the piles of mined aggregate. During the summer months the viscous tar flows from the seeps down the embankment and collects in pools at the bottom of the slope. Other areas of the channel walls within the vicinity of the seeps have been reported to contain similar material mixed with varying amount of sand and gravel.

In August 2005 Geocon conducted an assessment of the tar material. Seven exploratory trenches, labeled T1 through T7, were excavated to depths ranging from 10 to 13 feet using a rubber-tired backhoe equipped with a 24-inch bucket. The first trench, T1 was excavated adjacent to where the material could be seen seeping out of the stream channel wall. The tar was encountered at depths ranging from 7 to 12 feet in T1.

Six additional trenches were excavated, T2 through T7, encompassing T1 to the north, south, and east. The western extent of the material was defined by the wall of the stream channel. The tar material was encountered in trench T1 only. The volume of material observed in T1 was estimated to be approximately 12 cubic yards.

In a letter dated October 17, 2008 the California Department of Toxic Substances Control (DTSC) directed that the tar material be removed from the Site and properly recycled or disposed.

3.0 Tar Material Excavation and Disposal

The following sections present the recommended technical and logistical aspects of implementing remedial excavation and offsite disposal of the tar material.

Pre-Field Activities

- Identify, and obtain pre-approval from, an appropriately licensed landfill or recycling facility for acceptance of the waste materials.
- The Contractor should provide a minimum of 48 hours notice prior to the start of the soil excavation activities to subscribing local public utilities via Underground Service Alert (USA). Field meetings with public utility USA subscribers and utility potholing may be necessary to adequately delineate subsurface public utilities and conduits in proximity to the proposed remedial excavation locations.
- Meet with representatives from the California Department of Fish and Game and Army Corps of Engineers to discuss potential impacts to the stream channel that may occur during excavation activities.

Field Activities

- Removal of trees, brush, and other rubble may be required to access portions of the mined aggregate piles where the tar material is reportedly buried. Grading of an access road to allow equipment to enter the stream cut channel may also be required.
- Excavation of the tar material from the mined aggregate piles will be performed with a track-mounted excavator.

Project No. A8314-77-03

- 2 -

November 28, 2008

- Excavation of the tar material will be based on visual observations. Effort will be made to minimize the amount of clean aggregate material transported off site.
- When possible the excavated materials will be loaded directly into haul trucks. The haul trucks will be covered with tarps prior to transport to the designated landfill/recycling facility. Temporary stockpiling of the waste materials may be performed on the west side of the stream cut channel if conditions prevent access of haul trucks near the excavation.
- The Contractor will implement effective dust control measures including watering the active work area to prevent visible dust. Work will be suspended if weather conditions, including wind speeds or gusts exceeding 25 miles per hour, prevent effective dust control. Excavation equipment will be inspected and cleaned (if necessary) prior to leaving the Site.
- Site restoration activities will be dependent on the extent of the excavation but at a minimum will include returning the bottom of the stream cut channel to near its original elevation and hydro-seeding the excavated area to comply with California Department of Fish and Game requirements.

The activities outlined above are designed to address the tar material known to be present within a limited area of the mined aggregate piles at the Site. It is possible that similar material may be buried within the aggregate piles elsewhere at the Site. Development plans for the Site include the mass grading and removal of the aggregate piles within the "Fish Tail" area. If additional tar material is discovered during future grading activities it will be managed appropriately.

Please contact the undersigned at your convenience if you have any questions regarding this letter or if we may be of further service.

Sincerely,

GEOCON INLAND EMPIRE, IN ONAL G NO. 7624 Exp. 9/30/10 Michael Conkle, PG Senior Geologist OFCAL MPC:am

(1) Addressee

Project No. A8314-77-03

- 3 -

November 28, 2008